SITE INFORMATION TABLE					
River name:		Date (dd/mm/yr):			
Site name:		Collector's name:			
GPS co-ord Lat(S):	Long(E):	School/organisation:			
Site description: e.g. downstream of industry		Notes: e.g. weather, impacts, flow, etc.			
pH: Water temp: ^c	C Dissolved oxygen:	mg/l Water clarity: info at www.minisass.org			

GPS co-ordinates as degrees, minutes, seconds (e.g. 29°30'25" S / 30°45'10" E) <u>OR</u> as decimal degrees (e.g. 29.50694°S / 30.75277°E) If you don't have a GPS, upload your results at www.minisass.org, find your site on the map, click to upload your result and the co-ordinates are saved for you!

Scoring

- 1. On the table, circle the sensitivity scores of the identified organisms.
- 2. Add up all of the sensitivity scores.
- 3. Divide the total of the sensitivity scores by the number of groups identified.
- 4. The result is the **<u>average score</u>**, which can be interpreted into an ecological category given below.

Interpret the miniSASS score:

Although an ideal sample site has rocky, sandy, and vegetation habitats, not all habitats are always present at a site. If your river had no rocky habitats that were sampled, use the <u>sandy type</u> category to interpret your scores.

GROUPS	SENSITIVITY SCORE	
Flat worms	3	
Worms	2	
Leeches	2	
Crabs or shrimps	6	
Stoneflies	17	
Minnow mayflies	5	
Other mayflies	11	
Damselflies	4	
Dragonflies	6	
Bugs or beetles	5	
Caddisflies (cased & uncased)	9	
True flies	2	
Snails	4	
TOTAL SCORE		
NUMBER OF GROUPS		
AVERAGE SCORE		
(miniSASS Score)		
Average Score = Total Score ÷ Number of groups		

Ecological category (Condition)		River Category		
		Sandy Type	Rocky Type	
-	NATURAL CONDITION (Unchanged/untouched – Blue)	> 6.9	> 7.2	\square
N.	GOOD CONDITION (Few modifications – Green)	5.9 to 6.8	6.2 to 7.2	
and the second s	FAIR CONDITION (Some modifications – Orange)	5.4 to 5.8	5.7 to 6.1	
X	POOR CONDITION (Lots of modifications – Red)	4.8 to 5.3	5.3 to 5.6	
N.	VERY POOR CONDITION (Critically modified – Purple)	< 4.8	< 5.3	

Now, upload your results at <u>www.miniSASS.org</u> or use the miniSASS App (download from the miniSASS website) or send a scan of this page to <u>info@minisass.org</u>!

miniSASS is used to monitor the health of a river and measure the general quality of the water in that river. It uses the make-up of macroinvertebrates (small animals) living in rivers and is based on the sensitivity of the various animals to water quality.

NOTE: miniSASS does <u>NOT</u> measure the contamination of the water by bacteria and viruses and thus does not tell us if the river water is fit to drink.

Equipment list

- Net (see <u>www.minisass.org</u>)
- white container / tray / ice-cream box
- magnifying glass
- pencil
- shoes/gumboots
- hand wash / soap

www.minisass.org

Version 3.0 – September 2015

Method

The best sites have rocks in moving water (**rocky type** rivers). Not all sites have rocks, but may be largely sandy (**sandy type** rivers).

- Whilst holding a small net in the current, **disturb** the stones, vegetation, sand etc. with your feet or hands.
- 2. You can also lift stones out of the current and gently **pick** organisms off with your fingers or forceps.
- 3. Do this for about 5 minutes whilst ranging across the river to different habitats (biotopes).
- 4. Rinse the net and turn the contents into a plastic tray. Identify each group of organisms using the identification guide (see insert: start with the dichotomous key, then use the identification guide for more information).
- 5. Fill in the site information and **mark** the identified organisms off on the scoring sheet (back page).
- 6. Add up the sensitivity scores and determine the average score.
- 7. Interpret your miniSASS score.
- 8. Remember: **WASH** your hands when done!

https://www.youtube.com/channel/UCub 24hwrLi52WR9C24uTbaQ

Don't have a net? Make your own - it is easy!

Take any piece of wire, for example an old clothes hanger, and bend it into the shape of a net. Then tie the netting (which can be any porous material) to the wire with a piece of string. Alternatively cut the bottom out of an ice cream container and staple netting to the bottom. Now you have a net!!